A. python 金融分析 应该使用什么模型
链接:http://pan..com/s/1djPqbCXnQrRpW0dgi2MCJg
华尔街学堂 python金融实务从入门到精通。最近,越来越多的研究员、基金经理甚至财务会计领域的朋友,向小编咨询:金融人需要学Python么?事实上在现在,这已经不是一个问题了。Python已成为国内很多顶级投行、基金、咨询等泛金融、商科领域的必备技能。中金公司、银河证券、南方基金、银华基金在招聘分析师岗位时,纷纷要求熟练掌握Python数据分析技能。
课程目录:
Python在金融资管领域中的应用
安装anaconda步骤
Python基础知识
Python基础金融分析应用
成为编程能手:Python知识进阶
利用Python实现金融数据收集、分析与可视化
......
B. python定义模型
学python的人都知道,python中一切皆是对象,如class生成的对象是对象,class本身也是对象,int是对象,str是对象,dict是对象...。所以,我很好奇,python是怎样实现这些对象的?带着这份好奇,我决定去看看python的源码,毕竟源码才是满足自己好奇心最直接的方法。
在object.h文件中,定义了两种数据结构PyObject和PyVarObject,代码如下:
1 #define PyObject_HEAD 2 Py_ssize_t ob_refcnt; 3 struct _typeobject *ob_type; 4 5 #define PyObject_VAR_HEAD 6 PyObject_HEAD 7 Py_ssize_t ob_size; 8 9 typedef struct _object {10 PyObject_HEAD11 } PyObject;12 13 typedef struct {14 PyObject_VAR_HEAD15 } PyVarObject;
这两种数据结构分别对应python的两种对象:固定长度对象和可变长度对象。python中的所有对象都属于这两种对象中的一种,如int,float是固定长度对象,list,str,dict是可变长度对象。从上面两种对象数据结构定义来看,可变长度对象和固定长度对象的头都是PyObject结构体,也就是说python中所有对象的开头都包含这个结构体,并且可以用PyObject *指针来访问任何对象,这种访问对象的方法在python的源码中随处可见。PyObject结构体包含两个成员,ob_refcnt和ob_type指针。ob_refcnt用来表示对象被引用的次数,当ob_refcnt == 0时,这个对象会被立即销毁;ob_type指针指向了一个_typeobject类型的结构体,表示对象所属的类型,也就是生成该对象的类型,这其实很类似于面向对象中类与实例的关系,PyObject是某个类的实例,ob_type表示这个类。但与面向对象不同的是,ob_type本身也是个对象,我们来看下_typeobject的定义:
1 typedef struct _typeobject { 2 PyObject_VAR_HEAD 3 const char *tp_name; /*类型名 */ 4 Py_ssize_t tp_basicsize, tp_itemsize; /* 实例化对象的大小 */ 5 6 /* 标准方法 */ 7 8 destructor tp_dealloc; 9 printfunc tp_print;10 getattrfunc tp_getattr;11 setattrfunc tp_setattr;12 cmpfunc tp_compare;13 reprfunc tp_repr;14 15 /* 标准类(数值类,列表类,dict类)方法*/16 17 PyNumberMethods *tp_as_number;18 PySequenceMethods *tp_as_sequence;19 PyMappingMethods *tp_as_mapping;20 21 /* 其它标准方法*/22 23 hashfunc tp_hash;24 ternaryfunc tp_call;25 reprfunc tp_str;26 getattrofunc tp_getattro;27 setattrofunc tp_setattro;28 ...
29 } PyTypeObject;
从上面定义来看,_typeobject的开头也包含了PyObject结构体,所以它也是一个对象,既然它也是一个对象,那么按照面向对象的理解,它又是谁来生成的呢?答案是所有PyTypeObject对象都是通过PyType_Type来生成的,包括PyType_Type本身,因为PyType_Type也是PyTypeObject对象,有点绕。PyType_Type的定义是通过将PyType_Type声明为全局静态变量实现的,具体如下:
1 PyTypeObject PyType_Type = { 2 PyVarObject_HEAD_INIT(&PyType_Type, 0) 3 "type", /* tp_name */ 4 sizeof(PyHeapTypeObject), /* tp_basicsize */ 5 sizeof(PyMemberDef), /* tp_itemsize */ 6 (destructor)type_dealloc, /* tp_dealloc */ 7 0, /* tp_print */ 8 0, /* tp_getattr */ 9 0, /* tp_setattr */10 0, /* tp_compare */11 (reprfunc)type_repr, /* tp_repr */12 0, /* tp_as_number */13 0, /* tp_as_sequence */14 0, /* tp_as_mapping */15 (hashfunc)_Py_HashPointer, /* tp_hash */16 (ternaryfunc)type_call, /* tp_call */17 0, /* tp_str */18 (getattrofunc)type_getattro, /* tp_getattro */19 (setattrofunc)type_setattro, /* tp_setattro */20 0, /* tp_as_buffer */21 ...22 }
从PyType_Type定义来看,ob_type被初始化为它自己的地址,所以PyType_Type的类型就是自己。从python源码实现来看,所有PyTypeObject的ob_type都会指向PyType_Type对象,所以PyType_Type是所有类型的类型,称之为元类。python中定义了很多内建的类型对象,如PyInt_Type (int类型),PyStr_Type (str类型),PyDict_Type(dict类型) 类型对象,下面看下PyInt_Type类型的定义:
1 PyTypeObject PyInt_Type = { 2 PyVarObject_HEAD_INIT(&PyType_Type, 0) 3 "int", 4 sizeof(PyIntObject), 5 0, 6 (destructor)int_dealloc, /* tp_dealloc */ 7 (printfunc)int_print, /* tp_print */ 8 0, /* tp_getattr */ 9 0, /* tp_setattr */10 (cmpfunc)int_compare, /* tp_compare */11 (reprfunc)int_to_decimal_string, /* tp_repr */12 &int_as_number, /* tp_as_number */13 0, /* tp_as_sequence */14 0, /* tp_as_mapping */15 (hashfunc)int_hash, /* tp_hash */16 0, /* tp_call */17 ...18 };
从PyInt_Type定义来看,它主要包含了int数据类型相关的方法。PyInt_Type类型对象的初始化和PyType_Type类型类似,PyInt_Type类型的定义也是通过全局静态变量的方式实现的,除了PyInt_Type了下,所有python内建类型都是以这种方式定义的。这些类型产生的对象都会共享这些类型对象,包括这些类型定义的方法。
在python中,怎样查看对象的类型呢?有两种方法,一种是直接type:
1 >>> x = 12 >>> type(x)3 <type 'int'>
另一种是通过对象的__class__属性:
1 >>> x = 12 >>> type(x)3 <type 'int'>4 >>> x.__class__5 <type 'int'>
现在来看看int,str,dict这些类型的类型:1 <type 'int'>2 >>> type(int)3 <type 'type'>4 >>> type(str)5 <type 'type'>6 >>> type(dict)7 <type 'type'>8 >>> type(type)9 <type 'type'>从这个输出来看,int,str,dict这些类型的类型都是type,这也印证了前面说的,所有类型都是通过元类type生成的。
C. 怎样用python实现深度学习
基于Python的深度学习库、深度学习方向、机器学习方向、自然语言处理方向的一些网站基本都是通过Python来实现的。
机器学习,尤其是现在火爆的深度学习,其工具框架大都提供了Python接口。Python在科学计算领域一直有着较好的声誉,其简洁清晰的语法以及丰富的计算工具,深受此领域开发者喜爱。
早在深度学习以及Tensorflow等框架流行之前,Python中即有scikit-learn,能够很方便地完成几乎所有机器学习模型,从经典数据集下载到构建模型只需要简单的几行代码。配合Pandas、matplotlib等工具,能很简单地进行调整。
而Tensorflow、PyTorch、MXNet、Keras等深度学习框架更是极大地拓展了机器学习的可能。使用Keras编写一个手写数字识别的深度学习网络仅仅需要寥寥数十行代码,即可借助底层实现,方便地调用包括GPU在内的大量资源完成工作。
值得一提的是,无论什么框架,Python只是作为前端描述用的语言,实际计算则是通过底层的C/C++实现。由于Python能很方便地引入和使用C/C++项目和库,从而实现功能和性能上的扩展,这样的大规模计算中,让开发者更关注逻辑于数据本身,而从内存分配等繁杂工作中解放出来,是Python被广泛应用到机器学习领域的重要原因。
D. 如何用Python在10分钟内树立一个预测模型
所谓预测模型我理解是机器学习的监督式算法。 常用的有 K 近邻, 决策树, 朴素贝叶斯等。 举例: 使用k近邻算法预测一个女的是不是美女: 我们抽取特征值:
身高,体重,三围等。 你先设置一些经验数据,例如: A: 165CM 50KG, 23 32,31 美 B 150 60KG 23 23 23 丑 现在输入 C 163 45 25 30 30 选择K =3, 算法会找经验数据中和这个数据最接近的三个 值,判断这三个对象是 美 还是丑。 如果2,3个美,则预测为美。否则为丑。
对应的python代码在网上都有,估计20-30 行吧。 自己找找。
E. 基于Python的电影网开发模式是什么
基于Python的电影网开发需要Flask框架。
1、使用整形,浮点型,路径型,字符串型下正则表达式路由转化器;
2、使用GET与POST请求,上传文件,cookie获取与响应,404处理;
3、使用模板自动转义,定义过滤器,定义全局上下文处理器,Jinja2语法,包含,继承,定义宏;
4、使用flask-wtf定义表单模型,字段类型,字段验证,视图处理表单,模板使用表单;
5、使用flask-sqlachemy定义数据库模型,对数据进行增删查改,数据迁移;
6、使用蓝图优化项目结构,实现微电影网站前台与后台业务逻辑;
7、flask部署,安装编译Nginx,安装Mysql服务以及通过Nginx反向代理对视频流媒体限制下载速率,限制单个IP能发起的播放连接数。
F. 如何用python建立线性模型
预测模型的分解过程 我总是集中于投入有质量的时间在建模的初始阶段,比如,假设生成、头脑风暴、讨论或理解可能的结果范围。所有这些活动都有助于我解决问题,并最终让我设计出更强大的商业解决方案。为什么你要在前面花费这段时间,这有充分的理由: 你有足够的时间投入并且你是无经验的(这是有影响的) 你不带有其它数据观点或想法的偏见(我总是建议,在深入研究数据之前做假设生成) 在后面的阶段,你会急于完成该项目而没有能力投入有质量的时间了。 这个阶段需要投入高质量时间,因此我没有提及时间表,不过我建议你把它作为标准的做法。这有助于你建立建立更好地预测模型,在后面的阶段的只需较少的迭代工作。让我们来看看建立第一个模型的剩余阶段的时间表: 数据描述性分析——50%的时间
G. 怎样用python数据建模
最近,我从孙子(指《孙子兵法》——译者注)那里学到了一些策略:速度和准备
“兵之情主速,乘人之不及,由不虞之道,攻其所不戒也。”(《孙子兵法•九地篇》)无备为战之大患,有备无患,其乃至德也。(哈哈,译者自己写了这句,想必大家能明白。)
这与数据科学博客有什么关系呢?这是你赢得竞争和编程马拉松的关键。如果你比竞争对手准备得更充分,你学习、迭代执行的速度越快,那么你就取得更好的名次,带来更好的结果。
由于近几年来,Python用户数量上涨及其本身的简洁性,使得这个工具包对数据科学世界的Python专家们变得有意义。本文将帮助你更快更好地建立第一个预测模型。绝大多数优秀的数据科学家和kagglers建立自己的第一个有效模型并快速提交。这不仅仅有助于他们领先于排行榜,而且提供了问题的基准解决方案。
预测模型的分解过程
我总是集中于投入有质量的时间在建模的初始阶段,比如,假设生成、头脑风暴、讨论或理解可能的结果范围。所有这些活动都有助于我解决问题,并最终让我设计出更强大的商业解决方案。为什么你要在前面花费这段时间,这有充分的理由:
你有足够的时间投入并且你是无经验的(这是有影响的)
你不带有其它数据观点或想法的偏见(我总是建议,在深入研究数据之前做假设生成)
在后面的阶段,你会急于完成该项目而没有能力投入有质量的时间了。
这个阶段需要投入高质量时间,因此我没有提及时间表,不过我建议你把它作为标准的做法。这有助于你建立建立更好地预测模型,在后面的阶段的只需较少的迭代工作。让我们来看看建立第一个模型的剩余阶段的时间表:
数据描述性分析——50%的时间
数据预处理(缺失值和异常值修复)——40%的时间
数据建模——4%的时间
性能预测——6%的时间
让我们一步一步完成每个过程(每一步投入预测的时间):
阶段1:描述性分析/数据探索
在我刚开始成为数据科学家的时候,数据探索占据了我大量的时间。不过,随着时间的推移,我已经把大量的数据操作自动化了。由于数据准备占据建立第一个模型工作量的50%,自动化的好处是显而易见的。
这是我们的第一个基准模型,我们去掉任何特征设计。因此,描述分析所需的时间仅限于了解缺失值和直接可见的大的特征。在我的方法体系中,你将需要2分钟来完成这一步(假设,100000个观测数据集)。
我的第一个模型执行的操作:
确定ID,输入特征和目标特征
确定分类和数值特征
识别缺失值所在列
阶段2:数据预处理(缺失值处理)
有许多方法可以解决这个问题。对于我们的第一个模型,我们将专注于智能和快速技术来建立第一个有效模型。
为缺失值创建假标志:有用,有时缺失值本身就携带了大量的信息。
用均值、中位数或其它简单方法填补缺失值:均值和中位数填补都表现良好,大多数人喜欢用均值填补但是在有偏分布的情况下我建议使用中位数。其它智能的方法与均值和中位数填补类似,使用其它相关特征填补或建立模型。比如,在Titanic生存挑战中,你可以使用乘客名字的称呼,比如:“Mr.”, “Miss.”,”Mrs.”,”Master”,来填补年龄的缺失值,这对模型性能有很好的影响。
填补缺失的分类变量:创建一个新的等级来填补分类变量,让所有的缺失值编码为一个单一值比如,“New_Cat”,或者,你可以看看频率组合,使用高频率的分类变量来填补缺失值。
由于数据处理方法如此简单,你可以只需要3到4分钟来处理数据。
阶段3:数据建模
根据不同的业务问题,我推荐使用GBM或RandomForest技术的任意一种。这两个技术可以极其有效地创建基准解决方案。我已经看到数据科学家通常把这两个方法作为他们的第一个模型同时也作为最后一个模型。这最多用去4到5分钟。
H. python数据分析的一般步骤是什么
下面是用python进行数据分析的一般步骤:
一:数据抽取
从外部源数据中获取数据
保存为各种格式的文件、数据库等
使用Scrapy爬虫等技术
二:数据加载
从数据库、文件中提取数据,变成DataFrame对象
pandas库的文件读取方法
三:数据处理
数据准备:
对DataFrame对象(多个)进行组装、合并等操作
pandas库的操作
数据转化:
类型转化、分类(面元等)、异常值检测、过滤等
pandas库的操作
数据聚合:
分组(分类)、函数处理、合并成新的对象
pandas库的操作
四:数据可视化
将pandas的数据结构转化为图表的形式
matplotlib库
五:预测模型的创建和评估
数据挖掘的各种算法:
关联规则挖掘、回归分析、聚类、分类、时序挖掘、序列模式挖掘等
六:部署(得出结果)
从模型和评估中获得知识
知识的表示形式:规则、决策树、知识基、网络权值
更多技术请关注python视频教程。
I. Python想要从事数据分析工作,都要学习哪些知识
就目前来说Python是人工智能的最佳编程语言,想要从事数据分析的话需要学习以下知识:
1、熟练Python语言基础,掌握数据分析建模理论、熟悉数据分析建模过程;
2、熟练NumPy、SciPy和Pandas数据分析工具的使用;特别是Pandas和Numpy,Pandas是Python中一种数据分析的包,而Numpy是一个可以借助Python实现科学计算的包,可以计算和储存大型矩阵。
3、熟练掌握数据可视化工具,结合Python学习统计学、结合Excel学习SQL,然后结合Excel数据分析来学习numpy、pandas等以及数据可视化。
J. python代码如何应用系统聚类和K-means聚类法进行聚类分析 然后选择变量,建立适当的模型
-Means聚类算法
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。
随机选择k个点作为初始的聚类中心。
对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。
对每个簇,计算所有点的均值作为新的聚类中心。
重复2,3直到聚类中心不再发生改变
Figure 1
K-means的应用
数据介绍:
现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八大主要变量数据,这八大变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。
实验目的:
通过聚类,了解1999年各个省份的消费水平在国内的情况。
技术路线:
sklearn.cluster.Kmeans
数据实例: